Formula for \(\cos(\alpha-\beta)\)
Consider the unit circle below:
Here, we make \(\overline{AB}=\overline{CD}\), so they have the same angles.
Since we made the lengths the same, lets actually calculate the lengths using the coordinates.
\begin{equation*}
\overline{AB}^{2}=(1-\cos(\alpha-\beta))^{2}+\sin(\alpha-\beta)^{2}=(\cos\beta-\cos\alpha)^{2}+(\sin\beta-\sin\alpha)^{2}=\overline{CD}^{2}
\end{equation*}
Expand these and use \(\sin^{2}x+\cos^{2}x=1\) and you’ll eventually get:
\begin{equation*}
\cos(\alpha-\beta)=\cos\alpha\cos\beta+\sin\alpha\sin\beta
\end{equation*}
In Sage:
x, y = var('x y') print((cos(x-y)).trig_expand())
cos(x)*cos(y) + sin(x)*sin(y)
All the Other Identities
- \(\cos(-\alpha)=\cos\alpha\)
- \(\cos\left(\frac{\pi}{2}-\alpha\right)=\sin\alpha\)
- \(\cos\left(\frac{\pi}{2}+\alpha\right)=-\sin\alpha\)
- \(\sin\left(\frac{\pi}{2}+\alpha\right)=\cos\alpha\)
- \(\sin(-\alpha)=-\sin\alpha\)
- \(\tan(-\alpha)=-\tan\alpha\)
- \(\cos(\alpha+\beta)=\cos\alpha\cos\beta-\sin\alpha\sin\beta\)
- \(\sin(\alpha+\beta)=\sin\alpha\cos\beta+\sin\beta\cos\alpha\)
- \(\sin(\alpha-\beta)=\sin\alpha\cos\beta-\sin\beta\cos\alpha\)
- \(\sin(\pi-\beta)=\sin\beta\)
- \(\cos(\pi-\beta)=-\cos\beta\)
- \(\tan(\alpha\pm\beta)=\frac{\tan\alpha\pm\tan\beta}{1\mp\tan\alpha\tan\beta}\)
- \(\sin2\alpha=2\sin\alpha\cos\alpha\)
- \(\cos2\alpha=\cos^{2}\alpha-\sin^{2}\alpha=2\cos^{2}\alpha-1=1-2\sin^{2}\alpha\)
- \(\tan2\alpha=\frac{2\tan\alpha}{1-\tan^{2}\alpha}\)
- \(\sin\alpha=\pm\sqrt{\frac{1-\cos2\alpha}{2}}\)
- \(\cos\alpha=\pm\sqrt{\frac{1+\cos2\alpha}{2}}\)
- \(\tan\alpha=\pm\sqrt{\frac{1-\cos2\alpha}{1+\cos2\alpha}}\)
- \(\sin A+\sin B=2\sin\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)\)
- \(\sin A-\sin B=2\sin\left(\frac{A-B}{2}\right)\cos\left(\frac{A+B}{2}\right)\)
- \(\cos A+\cos B=2\cos\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)\)
- \(\cos A-\cos B=2\sin\left(\frac{A+B}{2}\right)\sin\left(\frac{A-B}{2}\right)\)