Ordinary Generating Functions

Posted by Beetle B. on Thu 18 September 2014

Definition

An ordinary generating function of a sequence \(\left\{a_{k}\right\}\) is:

\begin{equation*} A(z) = \sum_{k\ge 0}a_{k}z^{k} \end{equation*}

We use the notation \([z^{N}]A(z)\) to get the coefficient of \(z^{N}\) in \(A(z)\).

This is a tool that converts from sequences to functions.

Examples

\begin{equation*} \left\{1,1,\dots\right\}=\frac{1}{1-z} \end{equation*}
\begin{equation*} \left\{1/N!\right\}=e^{z} \end{equation*}

Tricks To Get The Generating Function of a Sequence

Scaling

\begin{equation*} A(cz) = \sum_{k\ge 0}c^{k}a_{k}z^{k} \end{equation*}

Addition of Two Functions

\begin{equation*} A(z)+B(z)=\sum_{k\ge 0}\left(a_{k}+b_{k}\right)z^{k} \end{equation*}

If you can’t figure out the function, could it be a difference of two functions?

Differentiation

\begin{equation*} zA'(z) = \sum_{k\ge 1}ka_{k}z^{k} \end{equation*}

Could it have been the derivative of a known function?

Examples:

\begin{equation*} \left\{0,1,2,3,\dots\right\}=\frac{z}{\left(1-z\right)^{2}}=z\frac{d}{dz}\frac{1}{1-z} \end{equation*}
\begin{equation*} \left\{\dbinom{N}{2}\right\}=\frac{z^{2}}{\left(1-z\right)^{3}}=\frac{1}{2}z^{2}\frac{d^{2}}{dz^{2}}\frac{1}{1-z} \end{equation*}
\begin{equation*} \left\{\dbinom{N}{M}\right\}=\frac{z^{M}}{\left(1-z\right)^{M+1}}=\frac{z^{M}}{M!}\frac{d^{M}}{dz^{M}}\frac{1}{1-z} \end{equation*}
\begin{equation*} \left\{\dbinom{N+M}{M}\right\}=\frac{1}{\left(1-z\right)^{M+1}}=\frac{1}{M!}\frac{d^{M}}{dz^{M}}\frac{1}{1-z} \end{equation*}

Integration

\begin{equation*} \int_{0}{z}A(t)dt = \sum_{k\ge 1}\frac{a_{k-1}}{k}z^{k} \end{equation*}

Examples:

\begin{equation*} \left\{\frac{1}{N}\right\}=\ln\frac{1}{1-z} \end{equation*}

Partial Sums

\begin{equation*} \left\{\sum_{k=0}^{k=n}a_{k}\right\}=\frac{1}{1-z}A(z) \end{equation*}

To prove this, write the RHS as a product of two sums, combine, and change the order of summation (also may need to reindex to finally get \(z^{n}\)).

\begin{equation*} \left\{H_{N}\right\}=\frac{1}{1-z}\ln\frac{1}{1-z} \end{equation*}

where \(H_{N}\) is the sum of the harmonic sequence.

Convolution

\begin{equation*} \left\{\sum_{k=0}^{k=n}a_{k}b_{n-k}\right\}=A(z)B(z) \end{equation*}

Expansion

Do a Taylor/Mclaurin expansion.

Notes

The techniques on this page allow you to derive some identities. A technique will give you one result for the coefficient of \(z^{N}\), and simply doing a Mclaurin expansion on the generating function may yield a different expression. Setting the two together gives you an identity.

An example is:

\begin{equation*} \sum_{k=1}^{N}H_{k}=\left(N+1\right)\left(H_{N+1}-1\right) \end{equation*}

It’s not hard to show that the LHS is:

\begin{equation*} \frac{1}{\left(1-z\right)^{2}}\ln\frac{1}{1-z} \end{equation*}

Do a Mclaurin expansion to get the RHS.