Exponential Generating Functions

Posted by Beetle B. on Fri 19 September 2014

To form a generating function, we multiplied by \(z^{N}\) and summed. This is not the only way to form a generating function. Another way is to multiply by \(z^{N}/N!\) and then sum.

Then:

\begin{equation*} \{1\}=e^{z} \end{equation*}
\begin{equation*} \left\{2^{N}\right\}=e^{2z} \end{equation*}
\begin{equation*} \{N!\}=\frac{1}{1-z} \end{equation*}

Convolution:

\begin{equation*} \left\{\sum_{k=0}^{n}\dbinom{n}{k}a_{k}b_{n-k}\right\}=A(z)B(z) \end{equation*}

The proof is instructive:

\begin{equation*} A(z)B(z)=\sum_{k\ge0}a_{k}\frac{z^{k}}{k!}\sum_{n\ge0}b_{n}\frac{z^{n}}{n!} \end{equation*}

Reindex \(n\) to \(n-k\)

\begin{equation*} A(z)B(z)=\sum_{k\ge0}\sum_{n\ge k}\frac{a_{k}}{k!}\frac{b_{n-k}}{(n-k)!}z^{n} \end{equation*}

Multiply and divide by \(N!\):

\begin{equation*} A(z)B(z)=\sum_{k\ge0}\sum_{n\ge k}\dbinom{n}{k}a_{k}b_{n-k}\frac{z^{n}}{n!} \end{equation*}

Change the order of summation and you get the result.

Solving a recurrence relation:

\begin{equation*} f_{n}=\sum_{k}\dbinom{n}{k}\frac{f_{k}}{2^{k}} \end{equation*}

This is convolution using \(a_{k}=f_{k}\) and \(b_{n}=2^{n}\). To solve it, just follow the binomial convolution steps backwards:

  1. Switch order of summation from the get-go.
  2. Change \(n\) to \(n+k\).

The solution is:

\begin{equation*} f(z)=e^{z}f(z/2) \end{equation*}

You can now telescope to get

\begin{equation*} f(z)=e^{2z} \end{equation*}

This gives:

\begin{equation*} f_{n}=2^{n} \end{equation*}