Binomial Expansion

Posted by Beetle B. on Sat 06 November 2021

Some things to note:

The sum of all the coefficients is \(2^{n}\). To prove this, evaluate \(\left(a+b\right)^{n}\) with \(a=1,b=1\)

The sum of the odd and even binomial coefficients is the same. To prove this, evaluate \(\left(a+b\right)^{n}\) with \(a=1,b=-1\)

\((1+x)^{n}\)

If \(|x|<1\), then:

\begin{equation*} (1+x)^{n}=1+n x+\frac{n(n-1)}{2 !}+\frac{n(n-1)(n-2)}{3 !} x^{3}+\ldots \end{equation*}

One interesting use for this is to approximate certain numbers as an infinte series:

Consider:

\begin{equation*} 1+\frac{1}{3}+\frac{1\cdot 3}{3\cdot6}+\frac{1\cdot3 \cdot5}{3\cdot6\cdot9}+\ldots \end{equation*}

Equate it term by term with the series expansion above to identify \(x\) and \(n\).

Important: Always cross check that \(|x|<1\) when you get your answer!

Another example:

Show that if:

\begin{equation*} y=\frac{1}{2}\left(\frac{4}{9}\right)+\frac{1\cdot3}{2^{2} \cdot 2 !}\left(\frac{4}{9}\right)^{2}+\frac{1\cdot3 \cdot5}{2^{3} \cdot 3 !}\left(\frac{4}{9}\right)^{3}+\ldots \end{equation*}

Then \(5 y^{2}+10 y-4=0\)

The trick here is to consider \(1+y\) and then do a term by term matching.